CT值联合纹理特征建模对脑膜瘤质地的评估价值Evaluation value of the consistency of meningiomas based on CT density combined with texture feature modeling
李颖;陈基明;高静;张爱娟;
摘要(Abstract):
目的探讨CT平扫图像密度联合纹理特征参数在术前评估脑膜瘤质地中的价值。方法回顾性分析我院医学影像中心2013年1月至2019年7月间经手术病理证实的55例脑膜瘤患者的完整资料,根据术中脑膜瘤质地分为质软组(n=17)与质韧组(n=38)。在CT图像上瘤体最大截面手动勾画感兴趣区,测量病灶的CT值,提取纹理特征参数。利用最小冗余最大相关算法、最小绝对收缩和选择算子回归方法分析筛选纹理特征参数,采用多因素logistic回归分析建立预测脑膜瘤质地的模型,并绘制ROC曲线评价模型预测效能。结果质软组与质韧组间CT值差异具有统计学意义(t=-2.558、P=0.017),CT值预测脑膜瘤质地的曲线下面积(Area Under Curve, AUC)为0.813。基于CT平扫图像提取的1044个纹理特征参数中,共筛选出3个参数(偏度、45度惯性_步长8和全角高灰度游程优势_步长8_标准差),且在两组间差异具有统计学意义(t=-2.733、-2.492、-2.283;P=0.009、0.016、0.026),预测脑膜瘤质地AUC分别为0.731、0.650、0.584;纹理特征模型预测脑膜瘤质地的AUC为0.825;CT值联合纹理特征模型AUC为0.928。结论 CT值联合纹理特征模型具有较高预测脑膜瘤质地的效能,为术前预测脑膜瘤质地提供了一种新的定量分析方法。
关键词(KeyWords): 脑膜瘤质地;纹理分析;体层摄影术;X线计算机
基金项目(Foundation):
作者(Authors): 李颖;陈基明;高静;张爱娟;
DOI: 10.13799/j.cnki.mdjyxyxb.2021.05.012
参考文献(References):
- [1] BUERKI R A,HORBINSKI C,KRUSER T J,et al.An overview of meningiomas[J].Future Oncology,2018,14(21):2161-2177.
- [2] LEMEE J,CORNIOLA M V,BROI M D,et al.Extent of Resection in Meningioma:Predictive Factors and Clinical Implications[J].Scientific Reports,2019,9(1):5944.
- [3] SITTHINAMSUWAN B,KHAMPALIKIT I,NUNTAAREE S,et al.Predictors of meningioma consistency:A study in 243 consecutive cases[J].Acta Neurochirurgica,2012,154(8):1383-1389.
- [4] SMITH K A,LEEVER J D,CHAMOUN R B,et al.Predicting Consistency of Meningioma by Magnetic Resonance Imaging[J].Skull Base Surgery,2015,76(3):225-229.
- [5] LIU S,SHI H,JI C,et al.Preoperative CT texture analysis of gastric cancer:correlations with postoperative TNM staging[J].Clinical Radiology,2018,73(8):756-760.
- [6] ANDERSEN M B,HARDERS S W,GANESHAN B,et al.CT texture analysis can help differentiate between malignant and benign lymph nodes in the mediastinum in patients suspected for lung cancer[J].Acta Radiologica,2016,57(6):669-676.
- [7] 王国蓉,王志伟,金征宇.纹理分析在结直肠癌新辅助放化疗疗效预测及预后分析中的应用及研究进展(英文)[J].Chinese Medical Sciences Journal,2019,34(1):45-50.
- [8] QUDDUSI A,SHAMIM M S.Simpson grading as predictor of meningioma recurrence[J].Journal of the Pakistan Medical Association,2018,68(5):819-821.
- [9] HEALD J B,CARROLL T A,MAIR R J.Simpson grade:An opportunity to reassess the need for complete resection of meningiomas[J].Acta Neurochirurgica,2014,156(2):383-388.
- [10] 肖宗宇,陈晓娟,裴杰,等.超声吸引器在脑膜瘤手术切除中的应用[J].中国临床神经外科杂志,2015,20(10):626-627.
- [11] 焦迎斌,闫志勇,车树圣,等.颅内脑膜瘤病理学性质与其发生部位的关系[J].中国临床神经外科杂志,2014,19(12):25-27.
- [12] WATANABE K,KAKEDA S,YAMAMOTO J,et al.Prediction of hard meningiomas:quantitative evaluation based on the magnetic resonance signal intensity[J].Acta Radiologica,2016,57(3):333-340.
- [13] 程敬亮.颅内脑膜瘤的MRI:组织学和天然质地的相关性[J].国外医学临床放射学分册,1995(2):98-99.
- [14] KARTHIGEYAN M,DHANDAPANI S,SALUNKE P,et al.The Predictive Value of Conventional Magnetic Resonance Imaging Sequences on Operative Findings and Histopathology of Intracranial Meningiomas:A Prospective Study[J].Neurol India,2019,67(6):1439-1445.
- [15] HOOVER J M,MORRIS J M,MEYER F B,et al.Use of preoperative magnetic resonance imaging T1 and T2 sequences to determine intraoperative meningioma consistency[J].Surgical Neurology International,2011(2):142.
- [16] 刘慧.基于CT图像纹理分析肿瘤异质性的研究进展及应用[J].国际医学放射学杂志,2016,39(5):543-548.
- [17] GANESHAN B,GOH V,MANDEVILLE H C,et al.Non-Small Cell Lung Cancer:Histopathologic Correlates for Texture Parameters at CT[J].Radiology,2013,266(1):326-336.
- [18] LUBNER M G,SMITH A D,SANDRASEGARAN K,et al.CT Texture Analysis:Definitions,Applications,Biologic Correlates,and Challenges[J].Radiographics,2017,37(5):1483-1503.
- [19] 万强,陈基明,邢涛,等.基于CT密度联合纹理参数建模预测垂体大腺瘤质地[J].中国医学影像技术,2019,35(8):1190-1194.
- [20] MILES K A,BALAJI G,HAYBALL M P.CT texture analysis using the filtration-histogram method:what do the measurements mean?[J].Cancer Imaging,2013,13(3):400-406.